Population Sizing for Genetic Programming Based Upon Decision Making

نویسندگان

  • Kumara Sastry
  • Una-May O'Reilly
  • David E. Goldberg
چکیده

This paper derives a population sizing relationship for genetic programming (GP). Following the population-sizing derivation for genetic algorithms in Goldberg, Deb, and Clark (1992), it considers building block decision making as a key facet. The analysis yields a GP-unique relationship because it has to account for bloat and for the fact that GP solutions often use subsolutions multiple times. The population-sizing relationship depends upon tree size, solution complexity, problem di culty and building block expression probability. The relationship is used to analyze and empirically investigate population sizing for three model GP problems named ORDER, ON-OFF and LOUD. These problems exhibit bloat to di ering extents and di er in whether their solutions require the use of a building block multiple times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming

The objective of this paper is to present a technique for order preference by similarity to ideal solution (TOPSIS) algorithm to linear fractional bi-level multi-objective decision-making problem. TOPSIS is used to yield most appropriate alternative from a finite set of alternatives based upon simultaneous shortest distance from positive ideal solution (PIS) and furthest distance from negative ...

متن کامل

OPTIMAL LOT-SIZING DECISIONS WITH INTEGRATED PURCHASING, MANUFACTURING AND ASSEMBLING FOR REMANUFACTURING SYSTEMS

This work applies fuzzy sets to the integration of purchasing, manufacturing and assembling of production planning decisions with multiple suppliers, multiple components and multiple machines in remanufacturing systems. The developed fuzzy multi-objective linear programming model (FMOLP) simultaneously minimizes total costs, total $text{CO}_2$ emissions and total lead time with reference to cus...

متن کامل

Population Sizing for Optimum Sampling with Genetic Algorithms: A Case Study of the Onemax Problem

An experimental and analytical investigation of sampling, which focused on the sizing of population for optimum performance, was performed using the OneMax problem. A fixed-size population and population sizes that vary according to the number of samples were considered in this study. For the case of varying population sizes, population sizing models that ensure proper decision making of the GA...

متن کامل

A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...

متن کامل

Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange

Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0502020  شماره 

صفحات  -

تاریخ انتشار 2004